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Abstract 
A new approximate method of computing the condi- 
tional probability density function (c.p.d.f.) of a 
three-phase invariant is investigated, the results being 
compared to accurate calculations [Shmueli, 
Rabinovich & Weiss (1989). Acta Cryst. A45, 
361-367]. A direct dependence on N, the number of 
atoms in the unit cell, is incorporated into the new 
approximation and its performance in the equal- 
atom case appears to be excellent over a large range 
of N values. The polynomial approximation of the 
recently published method [Posner, Shmueli & Weiss 
(1993). Acta Cryst. A49, 260-265] has been improved 
in both accuracy and range. 

Introduction 

An exact expression for the conditional probability 
density function (hereinafter c.p.d.f.) of a three-phase 
invariant in space group P1 has been derived and 
implemented in computer programs by Shmueli, 
Rabinovich & Weiss (1989a,b). The underlying joint 
probability density function (hereinafter j.p.d.f.) is 
hexavariate as the random variables of the problem 
are the real and imaginary parts of the three struc- 
ture factors involved in the phase invariant. The 
computation of this exact c.p.d.f, requires the evalu- 
ation of a sixfold summation, the terms of which are 
products of Bessel-function series. This computation 
is therefore rather time consuming and cannot be 
proposed for routine application. Preliminary com- 
putations suggested that the exact c.p.d.f, of the 
three-phase invariant has a similar functional form 
to the approximate c.p.d.f, derived by Cochran 
(1955) on the basis of the central limit theorem, but 
the exact c.p.d.f.'s are more sharply peaked than the 
approximate ones. We have therefore investigated an 
approximation to the exact c.p.d.f, of the three-phase 
invariant that is expressed as a Cochran-type expres- 
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sion having the form 

p(C~K') = [27rlo(r')] -~ exp (K' cos ~), (1) 

where 

= ~ob + ~0k + ~0_ h- k (2) 

is a three-phase invariant, x' is a parameter derived 
from c.p.d.f.'s computed from the exact series 
(Shmueli et al., 1989a) and Io(x) is the modified 
Bessel function of the first kind. We recall that 
Cochran's (1955) c.p.d.f, has the same form as (1) 
but with x' replaced by 

K = 2N-  I/2IEhE~,E_ h _ kl, (3) 

where N is the number of atoms in the unit cell. The 
first attempt at this simple approximation was sum- 
marized by Posner, Shmueli & Weiss (1993). This 
work consisted of fitting a least-squares polynomial 
in El - l E d ,  E2 --lEd and E 3 - I g _ h _  k[ to the ratio p 
= K'/K, as well as expressing the ratio p as a product 
of a polynomial and an exponential function of the 
three structure-factor magnitudes and their powers. 
The numerical coefficients of these functions are 
based on extensive computations of exact c.p.d.f.'s 
for a range of Ei values and several discrete values of 
N. These coefficients have no direct dependence on N 
so that some sort of extrapolation is required beyond 
the range of N used in those calculations. It therefore 
seems desirable to devise a rapidly computable 
approximation, with the same conceptual basis as 
that given by Posner et al. (1993) but giving the user 
a more extended range of N and the possibility of 
treating the parameters El, E2, E3 and N on equal 
footings. A new algorithm for such an approxi- 
mation is described in the next section. The following 
section contains some improvements in the polyno- 
mial fit already described by Posner et al. (1993) and 
the paper is concluded by a short comparison of the 
performance of the methods described. These 
methods illustrate the kind of modeling that may 
also be of use in approximating c.p.d.f.'s for space 
groups other than P1 whenever exact expressions for 
such c.p.d.f.'s become available. 
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Description of the new algorithm 

The process of estimating approximate c.p.d.f.'s 
from (1) is based on exact c.p.d.f.'s computed for 
values of Ei, i = 1,2,3, in the range 1.0 to 2.75 and 
initial values of N in the range 15 to 40. The purpose 
of the new algorithm, which also deals with the 
equal-atom case, is to generate a table of coefficients, 
yielding an accurate approximation to the c.p.d.f, of 
• . The table was generated as follows: 

(1) As in the methods of Posner et al. (1993), for 
every set of arguments (EI,EE,E3,N) not exceeding 
the upper limit of the E range investigated, the 
parameter x' was computed which forced the 
Cochran-type c.p.d.f., given by (1), to agree with the 
exact c.p.d.f, at 4)= 0. 

(2) For every set of E 's  (El, E2, E3) and all the 
values of N used with this set in exact computations, 
the ratios K'/K were fitted to a cubic form in 1/N, 

p = x ' / x -  1 + ( c J N )  + (c2/N3), (4) 

where x is given by (3). Equation (4) contains the 
dependence on N and is found to provide a good 
approximation for the c.p.d.f, of ¢ in the range N _> 
15. It may be pointed out that the N -2 term was 
included in preliminary calculations but was later 
omitted because of the smallness of its coefficients. 

(3) All the sets of E 's  with a common sum were 
then grouped and the first four moments for each set 
of three E's  were computed. The first moment 

m l  = ( E l  + E2 ÷ E3) /3  (5) 

is constant within each such group, while the higher 
moments 

mk = [(E, - m,) k + (E2 - m,) k + (E3 - ml)k]/3 (6) 

for k = 2,3,4 may of course be different for different 
sets with the same sum. 

(4) Finally, within each group having a common 
sum of E's, the number of triplets in such a group 
ranging from four to six, the coefficients Cl and c2 
from (4) were fitted to linear combinations of the 
moments rn~: 

4 

Cl = 2 pkmk (7) 
k = l  

4 

c2 = Z Pk+4mk. (8) 
k = l  

The coefficients Pe of these combinations form the 
table that is used for estimating the c.p.d.f, of ~. The 
table contains nine columns, the first column having 
the sums of E 's  on which the calculation is based 
and the ( i +  1)th column containing p~, with i =  
1,...,8. These data are collected in Table 1. The rows 
of zeros in Table 1 are to ensure that the behavior of 
the interpolation for small E 's  will be reasonable, i.e. 
p will approach 1 as the E's  approach zero. 

The estimation of the c.p.d.f, from the input values 
of El, E2, E3 and N proceeds in an essentially reverse 
order of steps to that outlined above. The steps that 
are required are: 

(1) Sum the three E's  that were input, look up that 
sum in the first column of Table 1 and obtain the 
relevant p~'s by linear interpolation on the sums 
(column 1) for Pl - P 4  and linear interpolation on the 
cubes of the sums for P 5 -  P8. 

(2) Compute the first four moments as indicated in 
(5) and (6) and evaluate Cl and c2 from (7) and (8). 

(3) Compute K from (3) and K' from (4). 
(4) Compute the approximate c.p.d.f, from (1). 
The performance of this new approximation is 

discussed and illustrated in the final section. 

An improved polynomial approximation 

During the present study, some improvements were 
introduced into the computer program for exact 
c.p.d.f.'s, based on the algorithm of Shmueli et al 
(19893). These consisted mainly of enhancing the 
precision of the computation and precalculation of 
some trigonometric functions, which led to some 
reduction in the computing time. These improve- 
ments were followed by tests of the program and an 
extensive computation of exact c.p.d.f.'s of qb was 
performed. Altogether, 1008 c.p.d.f.'s were com- 
puted, each in the range 0 _< qb_< 90, comprising 84 
different sets of El, E2 and E3, the c.p.d.f, for each 
such set being computed for N varying from 15 to 70 
in steps of 5. The E values in this computation 
ranged from 1.25 to 2.75 in steps of 0.25 and 
included the end-point of the range for all of  the 
values of N considered. Specifically, E 1 ranged from 
1.25 to 2.75, E2 from El to 2.75 and E3 from E2 to 
2.75. For each of the exact c.p.d.f.'s, a parameter K' 
was computed that constrained (1) to be equal to the 
exact c.p.d.f, at qb = 0 and 12 systems of equations, 

5 

X auqj = p, ,  (9) 
j = l  

one for each value of N, were constructed and solved 
for the qfs by the least-squares method, where the 
index i ranges over all different c.p.d.f.'s with the 
same value of N, Pi = K'JKi, x~ being given by (3), 
depending on the appropriate values of E, and 

all = 1 (10) 

ai2 = EIEEE3 - T (11) 

a,3 = T(E,  + E2 + E3) (12) 

ai4 = T (E  2 + E~ + E]) (13) 

a~5 = T(E1E2 + E2E3 + EaE]). (14) 

The polynomial coefficients qj, i.e. the least-squares 
solutions of (9) for the 12 different values of N, are 
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Table 1. Coefficients o f  the N-dependent combinations o f  moments from (7) and (8) 

The table lists the pj's obtained from the fit described in the text. The variable Sum in the first column of  the table corresponds to the 
sum of  three E's,  which is taken as the lookup variable for the purpose of  interpolation. The row of  zeros at the top of  each part of  the 
table ensures that the output x' will approach x for small input E's. That  is, if Sum is less than 4.75, an interpolation between Sum = 

0.00 and Sum = 4.75 applies as described in the text. The notation d + 02 means x 102 e t c .  

Sum Pl P2 P3 P4 P5 P6 P7 P8 

0.00 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0 
4.75 2.9357431d+00 4.0872027d+00 -2.9851156d-01 - 1.1196822d-01 9.1721603d+01 1.2617928d+03 -5.9033255d+02 6.2274343d+02 
5.00 3.3248967d+00 4.3394953d+99 -3.1887020d-01 -1.8360029d-01 9.3291533d+01 1.4876488d+03 -7.2103437d+02 7.9259431d+02 
5.25 3.6883663d+00 4.6308843d+00 -3.4575212d-01 -2.5946429d-01 1.0043987d+02 1.6948631d+03 -8.5539932d+02 9.8924909d+02 
5.50 4.0169865d+00 4.8748876d+00 -3.3464682d-01 -3.5177149d-01 1.2712407d+02 1.9489354d+03 - 1.0532391d+03 1.2458130d+03 
5.75 4.3126518d+00 5.0850128d+00 -2.2799037d-01 -6.2947330d-01 1.8315531d+02 2.1993947d+03 - 1.3528071d+03 1.7651114d+03 
6.00 4.5915172d+00 5.1894809d+00 -8.5375540d-02 - 1.0166698d+00 2.6215700d+02 2.5870258d+03 - 1.6574841d+03 2.3939326d+03 
6.25 4.8621795d+00 5.3384508d+00 1.3012670d-01 - 1.7974944d+00 3.6597675d+02 2.9475226d+03 -2.0360387d+03 3.4997018d+03 
6.50 5.1278799d+00 5.7346871d+00 1.6031388d-01 -3.5358131d+00 4.9757920d+02 3.0687927d+03 -2.1527290d+03 5.7425006d+03 
6.75 5.4004982d+00 6.0339551d+00 -4.1840630d-01 -6.2138366d+00 6.4422968d+03 3.4465926d+03 - 1.5729023d+03 8.9668723d+03 
7.00 5.6774277d+00 5.3019869d+00 -5.5314723d-02 -6.4529352d+00 8.1348760d+02 5.0997264d+03 -2.1380393d+03 9.3239088d+03 
7.25 5.9473356d+00 4.3058726d+00 3.0421661d-01 -6.5179276d+00 1.0193952d+03 7.1328239d+03 -2.6798146d+03 9.5733328d+03 

given in Table 2. We can now recompute the ith 
c.p.d.f, from (1) by recovering !<" from the least- 
squares estimate of Pi and from the Cochran xi for 
these values of E~, E2, E3 and N. This is done as 
follows: (9) 

(1) Compute the ratio from (9)-(14) and Table 2 N 
for the required value of N, possibly by linear inter- 
polation (if N is not a multiple of five). 15 20 

(2) Compute K' as p x, where i< is given by (3). 25 

(3) Compute the c.p.d.f, of q~ from (1). 30 
For N between tabulated values, say 5i and 35 40 

5(i + 1), the ratio PN is obtained to good accuracy 45 
by linear interpolation. Thus, for 5i < N <  5( i+  1) 50 55 
and 3 < i < 14, we have 60 

65 
(15)  70 

where 

p = ( N -  5i)/5 

PN = PSi + P(Psi + I - P 5 i ) ,  

1)/[, 11 
or p =  -5 i i  5(i+1) 5i " 

(16) 

The two methods of linear interpolation lead to 
similar results. For N > 7 0 ,  the extrapolation 
formula 

p N  = 1 + ( 7 0 / N ) ( P 7 o  - 1) (17)  

may be used, where pTo is the value of p at N = 70. 

Comparative computations 

Several computation runs were carried out with the 
approximations described in the previous sections 
and discrepancies between the c.p.d.f.'s so obtained 
and those computed from the exact expressions of 
Shmueli et al. (1989a) were expressed in terms of R 
factors defined as 

R-" ~. (p ix  - -Papprox)  2 2 [P~x] 2 ( 18 )  
i= l  i= l  

Table 2. Least-squares estimates o f  the polynomial 
coefficients in (9) 

Each row of  the table contains the value of  N, the number of  
atoms in the unit cell and coefficients of  the polynomial defined in 

to (14) that correspond to this N. 

qt q2 q3 q4 q5 

0.427910 1.134285 -0.311552 0.125963 -0.052796 
0.883948 0.286319 -0.065698 0.040241 -0.024926 
0.900867 0.224664 -0.047014 0.023851 -0.013966 
0.910243 0.191166 -0.038569 0.016973 -0.009338 
0.918940 0.165820 -0.032786 0.013165 -0.006908 
0.927380 0.144764 -0.028180 0.010718 -0.005473 
0.935022 0.127331 -0.024456 0.009007 -0.004539 
0.940305 0.115162 -0.021989 0.007789 -0.003822 
0 . 9 ~ 3  0.105556 -0.020064 0.006895 -0.003317 
0.951988 0.091054 -0.016835 0.006101 -0.003162 
0.962720 0.072795 -0.012722 0.005209 -0.003046 
0.969729 0.062769 -0.010818 0.003997 -0.002123 

Table 3. Exact versus approximate c.p.d.f.'s in the 
range (15-70) 

The table lists the R factors (see text) that measure the discrepancy 
between the exact c.p.d.f, of  q~ and the Cochran (1955) c.p.d.f. 
(Re~-Co¢h), the c.p.d.f, based on the data in Table 1 (Re~.ssw) and 
the c.p.d.f, based on the data in Table 2 (R~.Psw). The E values in 
this computation are: E~ = 2.09, E2 = 2.35 and E3 = 2.63. 

N R~x.Coch R~x.ssw P~,-vsw 

15 0.3906 0.0368 0.0338 
20 0.2864 0.0183 0.0187 
25 0.2285 0.0130 0.0136 
30 0.1912 0.0102 0.0107 
35 0.1650 0.0084 0.0089 
40 0.1456 0.0072. 0.0076 
45 0.1305 0.0063 0.0066 
50 0.1184 0.0055 0.0058 
55 0.1084 0.0049 0.0052 
60 0.1002 0.0044 0.0047 
65 0.0935 0.0040 0.0041 
70 0.0877 0.0033 0.0031 

where n~, is the number of • values at which the 
c.p.d.f.'s were computed, P~x is the value of the exact 
c.p.d.f, at the ith point and i Papprox is the value of an 
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approximate c.p.d.f, of # at the /th point. In most 
computations, n ,  = 19 and qb was varied from 0 to 
90 ° in steps of 5 ° . The approximations considered 
are: (i) Cochran's (1955) c.p.d.f, of q~, based on the 
central limit theorem; (ii) the c.p.d.f, of @ based on 
the new algorithm described in this paper; and (iii) 
the c.p.d.f, of q~ based on an improved polynomial 
approximation based on the method of Posner et al. 
(1993). 

The agreement of approximations (ii) and (iii) with 
the exact c.p.d.f, is very good throughout the range 
15_<N_<70, as can be seen from Table 3. The 
discrepancy of Cochran's (1955) c.p.d.f, and the 
exact one is quite considerable in this range of N, 

although it decreases slowly with increasing N. Both 
new approximations have a similar behaviour: the 
value of R is highest at the low end of the N range 
and decreases with increasing N; their performance is 
similar and, in general, very good. 
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Abstract 

Formulae for the rotation of real spherical harmonic 
functions are presented. To facilitate their appli- 
cation, values of the matrices d(m0,m(zr/2), which 
occur in the equations, are tabulated for 1 < l _< 8 
and 0 < m', m _< l. The application of the equations 
to spherical harmonic functions with normalization 
commonly used in charge-density analysis is 
described. 

Introduction 

The real spherical harmonic functions are extensively 
used for the description of atomic orbitals and as 
density basis functions in the analysis of experimen- 
tal charge densities. In order to recognize the local or 
global symmetry of a particular site, it is often 
necessary to rotate the coordinate system after com- 
pletion of a theoretical calculation or an experimen- 
tal charge-density analysis. In the multipole analysis 
of charge densities, for example, application of local 
symmetry constraints requires the use of a local 
coordinate system on each of the atoms (Hansen & 
Coppens, 1978). For subsequent calculation of 
molecular properties, such as molecular electrostatic 
moments, it is necessary to rotate the functions to a 
common coordinate system. 
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The treatment given starts with the equations by 
Steinborn & Ruedenberg (1973) for the rotation of 
complex spherical harmonic functions and is similar 
to that described earlier by Cromer, Larson & 
Stewart (1976); however, expressions are given for 
both unnormalized and normalized spherical har- 
monic functions, the latter with normalization 
appropriate for either wave functions or density 
functions. Explicit numerical values are given for the 
matrices (up to l = 8) that occur in the equations, 
thus facilitating their application. In addition, a 
number of inadvertent errors in the earlier publica- 
tion have been eliminated. 

Coordinate-system rotations 

Let (r, 0, q) and (r, 0', ~0') be the spherical coordi- 
nates of a vector 

e, 

I. 
\ e3 /  \e'3] 

The unitary matrix that transforms the two fight- 
handed Cartesian bases e and e' can be written in 
terms of Eulerian angles a, fl and y (Arfken, 1970; 
Edmonds, 1974; Steinborn & Ruedenberg, 1973), 
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